题目内容

11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>0的解集用区间表示为(-4,0)∪(4,+∞).

分析 根据函数的奇偶性求出函数f(x)的表达式,然后解不等式即可.

解答 解:∵f(x)是定义在R上的奇函数,
∴f(0)=0.
设x<0,则-x>0,
∵当x>0时,f(x)=x2-4x,
∴f(-x)=x2+4x,
又f(-x)=x2+4x=-f(x),
∴f(x)=-x2-4x,x<0.
当x>0时,由f(x)>0得x2-4x>0,解得x>4或x<0(舍去),此时x>4.
当x=0时,f(0)>0不成立.
当x<0时,由f(x)>0得-x2-4x>0,解得-4<x<0.
综上x∈(-4,0)∪(4,+∞).
故答案为:(-4,0)∪(4,+∞).

点评 本题主要考查不等式的解法,利用函数的奇偶性求出函数f(x)的表达式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网