题目内容
数列(1+
),(2-
),(3+
),(4-
),…,[n+(-1)n+1
]前n项和为( )
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 16 |
| 3 |
| 2n |
分析:当n为奇数时,Sn=(1+2+3+…+n-1)+3(
+
+…+
)+(n+
);当n为偶数时,Sn=(1+2+3+…+n)+3(
+
+…+
).由此能求出结果.
| 1 |
| 22 |
| 1 |
| 24 |
| 1 |
| 2n-1 |
| 3 |
| 2n |
| 1 |
| 22 |
| 1 |
| 24 |
| 1 |
| 2n |
解答:解:当n为奇数时,
数列(1+
),(2-
),(3+
),(4-
),…,[n+(-1)n+1
]前n项和:
Sn=(1+2+3+…+n-1)+3(
+
+…+
)+(n+
)
=
+
+n+
=
+1+
=-
+
+1;
当n为偶数时,
数列(1+
),(2-
),(3+
),(4-
),…,[n+(-1)n+1
]前n项和:
Sn=(1+2+3+…+n)+3(
+
+…+
)
=
+
=
+1-
=-
+
+1.
故选D.
数列(1+
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 16 |
| 3 |
| 2n |
Sn=(1+2+3+…+n-1)+3(
| 1 |
| 22 |
| 1 |
| 24 |
| 1 |
| 2n-1 |
| 3 |
| 2n |
=
| n(n-1) |
| 2 |
| ||||||
1-
|
| 3 |
| 2n |
=
| n2+n |
| 2 |
| 1 |
| 2n |
| 1 |
| (-2)n |
| n2+n |
| 2 |
当n为偶数时,
数列(1+
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 16 |
| 3 |
| 2n |
Sn=(1+2+3+…+n)+3(
| 1 |
| 22 |
| 1 |
| 24 |
| 1 |
| 2n |
=
| n(n+1) |
| 2 |
| ||||||
1-
|
=
| n2+n |
| 2 |
| 1 |
| 2n |
| 1 |
| (-2)n |
| n2+n |
| 2 |
故选D.
点评:本题考查数列的求和,解题时要认真审题,仔细解答,注意分类讨论思想和等价转化思想的合理运用.
练习册系列答案
相关题目