题目内容
已知数列1,2×3,3×32,4×33,…,n•3n-1,…(n∈N*),则其前n项的和Sn=
.
| (2n-1)3n+1 |
| 4 |
| (2n-1)3n+1 |
| 4 |
分析:可得Sn=1+2×3+3×32+4×33+…+n•3n-1 ①,两边同乘以3可得3Sn=1×3+2×32+3×33+4×34+…+n•3n ②,①-②由错位相减法可得.
解答:解:由题意可得:
Sn=1+2×3+3×32+4×33+…+n•3n-1 ①
两边同乘以3可得,
3Sn=1×3+2×32+3×33+4×34+…+n•3n ②
①-②可得:
-2Sn=1+3+32+33+…+3n-1-n•3n
=
-n•3n=
,
故Sn=
,
故答案为:
Sn=1+2×3+3×32+4×33+…+n•3n-1 ①
两边同乘以3可得,
3Sn=1×3+2×32+3×33+4×34+…+n•3n ②
①-②可得:
-2Sn=1+3+32+33+…+3n-1-n•3n
=
| 1×(1-3n) |
| 1-3 |
| (1-2n)3n-1 |
| 2 |
故Sn=
| (2n-1)3n+1 |
| 4 |
故答案为:
| (2n-1)3n+1 |
| 4 |
点评:本题考查数列求和的错位相减法,属中档题.
练习册系列答案
相关题目