ÌâÄ¿ÄÚÈÝ
ÒÑ֪˫ÇúÏß
-
=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðΪA¡¢B£¬ÓÒ½¹µãΪF£¨c£¬0£©£¨c£¾0£©£¬ÓÒ×¼ÏßΪl£ºx=
£¬|AF|=3£¬¹ýµãF×÷Ö±Ïß½»Ë«ÇúÏßµÄÓÒÖ§ÓÚP¡¢QÁ½µã£¬ÑÓ³¤PB½»ÓÒ×¼ÏßlÓÚMµã£®
£¨¢ñ£©ÇóË«ÇúÏߵķ½³Ì£»
£¨¢ò£©Èô
•
=-17£¬Çó¡÷PBQµÄÃæ»ýS£»
£¨¢ó£©Èô
=¦Ë
£¨¦Ë¡Ù0£¬¦Ë¡Ù-1£©£¬ÎÊÊÇ·ñ´æÔÚʵÊý¦Ì=f£¨¦Ë£©£¬Ê¹µÃ
=¦Ì•
£¬Èô´æÔÚ£¬Çó³ö¦Ì=f£¨¦Ë£©µÄ±í´ïʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| x2 |
| a2 |
| y2 |
| b1 |
| 1 |
| 2 |
£¨¢ñ£©ÇóË«ÇúÏߵķ½³Ì£»
£¨¢ò£©Èô
| OP |
| OQ |
£¨¢ó£©Èô
| PF |
| FQ |
| AM |
| MQ |
·ÖÎö£º£¨¢ñ£©Ö±½ÓÓÉÌâÒâÁгö¹ØÓÚa£¬b£¬cµÄ·½³Ì×飬Çó½âºó¿ÉµÃË«ÇúÏߵķ½³Ì£»
£¨¢ò£©Éè³öÖ±ÏßPQµÄ·½³ÌºÍP£¬QµÄ×ø±ê£¬ÁªÁ¢Ö±ÏߺÍË«ÇúÏß·½³ÌºóÀûÓÃ
•
=-17½áºÏ¸ùÓëϵÊý¹ØÏµÇó³öÖ±ÏßµÄбÂÊ£¬ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃÏÒ³¤£¬´úÈëÈý½ÇÐεÄÃæ»ý¹«Ê½Çó½â£»
£¨¢ó£©Óɵãбʽд³öPBµÄ·½³Ì£¬È¡x=
µÃµ½MµÄ×ø±ê£¬½áºÏ
=¦Ë
°ÑµãPºÍQµÄ×ø±ê»¯Îªº¬ÓЦ˵ıí´ïʽ£¬ÀûÓÃÏìÁÁµÄ×ø±ê¼Ó¼õ·¨µÃµ½
ºÍ
£¬Í¨¹ýһϵÁеÄÕûÀí±äÐεõ½Á½ÏòÁ¿¹²Ïߣ®
£¨¢ò£©Éè³öÖ±ÏßPQµÄ·½³ÌºÍP£¬QµÄ×ø±ê£¬ÁªÁ¢Ö±ÏߺÍË«ÇúÏß·½³ÌºóÀûÓÃ
| OP |
| OQ |
£¨¢ó£©Óɵãбʽд³öPBµÄ·½³Ì£¬È¡x=
| 1 |
| 2 |
| PF |
| FQ |
| AM |
| MQ |
½â´ð£º
½â£º£¨¢ñ£©ÓÉÌâÒâÖª
⇒
£¬
ÔòË«ÇúÏß·½³ÌΪx2-
=1£»
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉÌâÒâÖªF£¨2£¬0£©£¬A£¨-1£¬0£©£¬B£¨1£¬0£©£®
ÓÐ×¼Ïßl£ºx=
ÉèPQ·½³ÌΪy=k£¨x-2£©£¬´úÈëË«ÇúÏß·½³Ì3x2-y2-3=0£¬
¿ÉµÃ£¨3-k2£©x2+4k2x-£¨4k2+3£©=0£®
ÓÉÓÚP¡¢Q¶¼ÔÚË«ÇúÏßÓÒÖ§ÉÏ£¬ËùÒÔ
⇒k2£¾3
¡ày1y2=k(x1-2)•k(x2-2)=k2[x1x2-2(x1+x2)+4]=
ÓÉÓÚ
=(x1£¬y1)£¬
=(x2£¬y2)
ÓÉ
•
=x1x2+y1y2=-17⇒
-
=-17⇒k2=4
´Ëʱ£¬x1+x2=16£¬x1x2=19£¬y1y2=-36
¡ày1+y2=k£¨x1-2£©+k£¨x2-2£©=k£¨x1+x2-4£©=12k
¡àSS¡÷BPQ=
|BF|¡Á|y1-y2|=
¡Á1¡Á
=
=6
£¨III£©´æÔÚʵÊý¦ÌÂú×ãÌâÉèÌõ¼þ
¡ßPBµÄ·½³ÌΪy-0=
(x-1)
Áîx=
£¬µÃy=
£¬¼´M£¨
£¬
£©
¡ß
=¦Ë
£¬¡à£¨2-x1£¬-y1£©=¦Ë£¨x2-2£¬y2£©
¼´
⇒
ÓÖ
⇒
¢Û
°Ñ¢Û´úÈë¢ÚµÃ£¬x12=¦Ë2x22+1-¦Ë2¢Ü
ÓÉ¢Ù¡¢¢ÜµÃ£ºx1=
=
¦Ë+
£¬x2=
+
ÓÖ
=(
£¬
)
¡à
=(x2-
£¬y2+
)
=(
+
-
£¬-
+
)
=(
•
£¬-
•
)
=(
•
£¬-
•
)
=
(
£¬
)
=
£®
Áî¦Ì=
£¬¡à
=
=¦Ì
¹Ê´æÔÚʵÊý¦Ì£¬Âú×ãÌâÉèÌõ¼þ£®
|
|
ÔòË«ÇúÏß·½³ÌΪx2-
| y2 |
| 3 |
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉÌâÒâÖªF£¨2£¬0£©£¬A£¨-1£¬0£©£¬B£¨1£¬0£©£®
ÓÐ×¼Ïßl£ºx=
| 1 |
| 2 |
ÉèPQ·½³ÌΪy=k£¨x-2£©£¬´úÈëË«ÇúÏß·½³Ì3x2-y2-3=0£¬
¿ÉµÃ£¨3-k2£©x2+4k2x-£¨4k2+3£©=0£®
ÓÉÓÚP¡¢Q¶¼ÔÚË«ÇúÏßÓÒÖ§ÉÏ£¬ËùÒÔ
|
¡ày1y2=k(x1-2)•k(x2-2)=k2[x1x2-2(x1+x2)+4]=
| -9k2 |
| k2-3 |
ÓÉÓÚ
| OP |
| OQ |
ÓÉ
| OP |
| OQ |
| 4k2+3 |
| k2-3 |
| 9k2 |
| k2-3 |
´Ëʱ£¬x1+x2=16£¬x1x2=19£¬y1y2=-36
¡ày1+y2=k£¨x1-2£©+k£¨x2-2£©=k£¨x1+x2-4£©=12k
¡àSS¡÷BPQ=
| 1 |
| 2 |
| 1 |
| 2 |
| (y1+y2)2-4y1y2 |
=
| 1 |
| 2 |
| (12k)2-4¡Á(-36) |
| 5 |
£¨III£©´æÔÚʵÊý¦ÌÂú×ãÌâÉèÌõ¼þ
¡ßPBµÄ·½³ÌΪy-0=
| y1 |
| x1-0 |
Áîx=
| 1 |
| 2 |
| -y1 |
| 2(x1-1) |
| 1 |
| 2 |
| -y1 |
| 2(x1-1) |
¡ß
| PF |
| FQ |
¼´
|
|
ÓÖ
|
|
°Ñ¢Û´úÈë¢ÚµÃ£¬x12=¦Ë2x22+1-¦Ë2¢Ü
ÓÉ¢Ù¡¢¢ÜµÃ£ºx1=
| 3¦Ë+5 |
| 4 |
| 3 |
| 4 |
| 5 |
| 4 |
| 3 |
| 4¦Ë |
| 5 |
| 4 |
ÓÖ
| AM |
| 3 |
| 2 |
| -y1 |
| 2(x1-1) |
¡à
| MQ |
| 1 |
| 2 |
| y1 |
| 2(x1-1) |
=(
| 3 |
| 4¦Ë |
| 5 |
| 4 |
| 1 |
| 2 |
| y1 |
| ¦Ë |
| y1 |
| 2(x1-1) |
=(
| 3 |
| 2 |
| ¦Ë+1 |
| 2¦Ë |
| y1 |
| 2(x1-1) |
| 2(x1-1)-¦Ë |
| ¦Ë |
=(
| 3 |
| 2 |
| ¦Ë+1 |
| ¦Ë |
| y1 |
| 2(x1-1) |
2(
| ||||
| ¦Ë |
=
| ¦Ë+1 |
| 2¦Ë |
| 3 |
| 2 |
| -y1 |
| 2(x1-1) |
=
| ¦Ë+1 |
| ¦Ë |
| AM |
Áî¦Ì=
| 2¦Ë |
| ¦Ë+1 |
| AM |
| 2¦Ë |
| ¦Ë+1 |
| MQ |
| MQ |
¹Ê´æÔÚʵÊý¦Ì£¬Âú×ãÌâÉèÌõ¼þ£®
µãÆÀ£º±¾Ì⿼²éÁËË«ÇúÏߵıê×¼·½³Ì£¬¿¼²éÁËÆ½ÐÐÏòÁ¿Óë¹²ÏßÏòÁ¿£¬¿¼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏߵĹØÏµ£¬ÑµÁ·ÁËÆ½ÃæÏòÁ¿ÔÚ½âÌâÖеÄÓ¦Óã¬ÌåÏÖÁË¡°Éè¶ø²»Ç󡱵ĽâÌâ˼Ïë·½·¨£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓڸ߿¼ÊÔ¾íÖеÄѹÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿