题目内容

4.已知数列{an}满足:a1=-13,a6+a8=-2,且an-1=2an-an+1(n≥2),则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前13项和为(  )
A.$\frac{1}{13}$B.-$\frac{1}{13}$C.$\frac{1}{11}$D.-$\frac{1}{11}$

分析 由条件可得an+1-an=an-an-1,可得数列{an}为等差数列,设公差为d,运用等差数列的通项公式解方程可得d,求得通项公式,以及$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-15)(2n-13)}$=$\frac{1}{2}$($\frac{1}{2n-15}$-$\frac{1}{2n-13}$),运用数列的求和方法:裂项相消求和,即可得到所求和.

解答 解:an-1=2an-an+1(n≥2),
可得an+1-an=an-an-1
可得数列{an}为等差数列,设公差为d,
由a1=-13,a6+a8=-2,即为2a1+12d=-2,
解得d=2,
则an=a1+(n-1)d=2n-15.
$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-15)(2n-13)}$=$\frac{1}{2}$($\frac{1}{2n-15}$-$\frac{1}{2n-13}$),
即有数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前13项和为$\frac{1}{2}$($\frac{1}{-13}$-$\frac{1}{-11}$+$\frac{1}{-11}$-$\frac{1}{-9}$+…+$\frac{1}{11}$-$\frac{1}{13}$)
=$\frac{1}{2}$×(-$\frac{1}{13}$-$\frac{1}{13}$)=-$\frac{1}{13}$.
故选:B.

点评 本题考查等差数列的递推式和通项公式的运用,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网