题目内容
已知x,y均为正实数,求证:
+
≥
.
| 1 |
| 4x |
| 1 |
| 4y |
| 1 |
| x+y |
证明:∵x,y均为正实数,∴x+y≥2
,当且仅当x=y时,取等号 (下同).
∴(x+y)2≥4xy,∴
≥
,即
+
≥
.
| xy |
∴(x+y)2≥4xy,∴
| x+y |
| 4xy |
| 1 |
| x+y |
| 1 |
| 4x |
| 1 |
| 4y |
| 1 |
| x+y |
练习册系列答案
相关题目
题目内容
| 1 |
| 4x |
| 1 |
| 4y |
| 1 |
| x+y |
| xy |
| x+y |
| 4xy |
| 1 |
| x+y |
| 1 |
| 4x |
| 1 |
| 4y |
| 1 |
| x+y |