题目内容
18.已知O是坐标原点,点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一个动点,则x+y的最大值是3.分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分ABC).
设z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A(1,2)时,
直线y=-x+z的截距最大,此时z最大.
代入目标函数z=x+y得z=1+2=3.
即目标函数z=x+y的最大值为3.
故答案为:3.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
8.某地区交通执法部门从某日上午9时开始对经过当地的200名车辆驾驶人员驾驶的车辆进行超速测试并分组,并根据测速的数据只做了频率分布图:
(1)求z,y,x的值;
(2)若在第3,4,5组用分层抽样的方法随机抽取6名驾驶人员做回访调查,并在这6名驾驶员中任选2人进行采访,求这2人中恰有1人超速在[80%,100%]的概率.
| 组号 | 超速分组 | 频数 | 频率 | 频率 组距 |
| 1 | [0,20%] | 176 | 0.88 | z |
| 2 | [20%,40%] | 12 | 0.06 | 0.0030 |
| 3 | [40%,60%] | 6 | y | 0.0015 |
| 4 | [60%,80%] | 4 | 0.02 | 0.0010 |
| 5 | [80%,100%] | x | 0.01 | 0.0005 |
(2)若在第3,4,5组用分层抽样的方法随机抽取6名驾驶人员做回访调查,并在这6名驾驶员中任选2人进行采访,求这2人中恰有1人超速在[80%,100%]的概率.
3.“a<0”是“函数y=x2-2ax在区间[1,+∞)上递增”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
7.设等比数列{an}的公比为q,其前项之积为Tn,并且满足条件:${a_1}>1,{a_{2015}}{a_{2016}}>1,\frac{{{a_{2015}}-1}}{{{a_{2016}}-1}}<0$.给出下列结论:(1)0<q<1;(2)a2015a2017-1>0;(3)T2016的值是Tn中最大的(4)使Tn>1成立的最大自然数等于4030.其中正确的结论为( )
| A. | (1),(3) | B. | (2),(3) | C. | (1),(4) | D. | (2),(4) |
8.同时抛掷2个骰子,其点数之和为6的概率为( )
| A. | $\frac{1}{9}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{12}$ | D. | $\frac{5}{36}$ |