题目内容

11.在△ABC中,内角A,B,C所对的边分别为a,b,c,2sinA+2sinB=($\sqrt{3}$+1)sin(A+B),c=2.
(1)求△ABC的周长;
(2)若△ABC的面积为$\frac{\sqrt{3}}{2}$,求C.

分析 (1)由2sinA+2sinB=($\sqrt{3}$+1)sin(A+B),可得2a+2b=$(\sqrt{3}+1)$c,又c=2,即可得出.
(2)由c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=22,可得ab=$\frac{\sqrt{3}}{1+cosC}$.又$\frac{1}{2}absinC$=$\frac{\sqrt{3}}{2}$,代入化简即可得出.

解答 解:(1)∵2sinA+2sinB=($\sqrt{3}$+1)sin(A+B),∴2a+2b=$(\sqrt{3}+1)$c,又c=2,
∴a+b=$\sqrt{3}$+1.
∴△ABC的周长=a+b+c=$\sqrt{3}$+3.
(2)∵c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=22
∴ab=$\frac{\sqrt{3}}{1+cosC}$.
∵$\frac{1}{2}absinC$=$\frac{\sqrt{3}}{2}$,∴$\frac{\sqrt{3}}{1+cosC}$sinC=$\sqrt{3}$,
∴sinC=1+cosC,
又sin2C+cos2C=1,
∴(1+cosC)2+cos2C=1,
cos2C+cosC=0,
∵C∈(0,π),
∴$C=\frac{π}{2}$.

点评 本题考查了正弦定理余弦定理的应用、三角形面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网