题目内容

19.已知f(x)=x2+ax+b,a,b∈R,不等式x>f(x)的解集是(-2,4),则f(x)>f(f(x))的解是(-3,-2)∪(3,4).

分析 根据x2+(a-1)x+b<0的解集是(-2,4),求出a,b的值,得到f(x)的解析式,解不等式即可.

解答 解:不等式x>f(x)的解集是(-2,4),
即x2+(a-1)x+b<0的解集是(-2,4),
∴$\left\{\begin{array}{l}{-2+4=-(a-1)}\\{-2×4=b}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-1}\\{b=-8}\end{array}\right.$,
∴f(x)=x2-x-8,
∴f(x)>f(f(x))即x2-x-8>(x2-x-8)2-(x2-x-8)-8,
解得:-2<x2-x-8<4,
∴$\left\{\begin{array}{l}{{x}^{2}-x-8>-2}\\{{x}^{2}-x-8<4}\end{array}\right.$,
解得:-3<x<-2或3<x<4;
故答案为:(-3,-2)∪(3,4).

点评 本题考查了二次函数的性质,考查解不等式问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网