题目内容
化简:
(1)(1+
)5+(1-
)5;
(2)(2x
+3x -
)4-(2x
-3x -
)4.
(1)(1+
| x |
| x |
(2)(2x
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
考点:二项式定理的应用,有理数指数幂的化简求值
专题:计算题
分析:(1)根据展开式得出=2+
x+
x2=2+20x+10x2,
(2)二项式的展开式得出=2
(2
)3•
+
(2
)•(
)3化简计算即可.
| 2c | 2 5 |
| 2c | 4 5 |
(2)二项式的展开式得出=2
| c | 1 4 |
| x |
| 3 | ||
|
| c | 3 4 |
| x |
| 3 | ||
|
解答:
解;(1)(1+
)5+(1-
)5=1+5
+
x+
(
)3+
x2+
(
)5+1-5
+
x-
(
)3+
x2-
(
)5
=2+
x+
x2=2+20x+10x2,
(2))(2x
+3x -
)4-(2x
-3x -
)4=2
(2
)3•
+
(2
)•(
)3=192x+
| x |
| x |
| x |
| c | 2 5 |
| c | 3 5 |
| x |
| c | 4 5 |
| c | 5 5 |
| x |
| x |
| c | 2 5 |
| c | 3 5 |
| x |
| c | 4 5 |
| c | 5 5 |
| x |
=2+
| 2c | 2 5 |
| 2c | 4 5 |
(2))(2x
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| c | 1 4 |
| x |
| 3 | ||
|
| c | 3 4 |
| x |
| 3 | ||
|
| 432 |
| x |
点评:本题考查了二项式的展开式的运用,属于容易题,难度不大.
练习册系列答案
相关题目
已知x为实数,条件p:x2<x,条件q:
>2,则p是q的( )
| 1 |
| x |
| A、充要条件 |
| B、必要不充分条 |
| C、充分不必要条件 |
| D、既不充分也不必要条件 |
若函数f(x)=(1+cosx)10+(1-cosx)10,x∈[0,π],则其最大值等于( )
| A、2048 | B、512 |
| C、2 | D、1024 |