题目内容

6.已知函数y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)与直线y=$\frac{1}{2}$相交,若在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则|$\overrightarrow{{M}_{1}{M}_{12}}$|等于(  )
A.$\frac{16π}{3}$B.C.$\frac{17π}{3}$D.12π

分析 利用三角函数的诱导公式与二倍角的正弦可知,y=sin2x,依题意可求得M1,M12的坐标,从而可求|$\overrightarrow{{M}_{1}{M}_{12}}$|的值.

解答 解:∵y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)=2cosxsinx=sin2x,
∴由题意得:sin2x=$\frac{1}{2}$,
∴2x=2kπ+$\frac{π}{6}$或2x=2kπ+$\frac{5π}{6}$,
∴x=kπ+$\frac{π}{12}$或x=kπ+$\frac{5π}{12}$,k∈Z,
∵正弦曲线y=sin2x与直线y=$\frac{1}{2}$在y轴右侧的交点自左向右依次记为M1,M2,M3,…,
∴得M1($\frac{π}{12}$,$\frac{1}{2}$),M12(5π+$\frac{5π}{12}$,$\frac{1}{2}$),∴|$\overrightarrow{{M}_{1}{M}_{12}}$|=$\frac{16π}{3}$,
故选A.

点评 本题考查函数的零点与方程根的关系,着重考查正弦函数的性质,求得M1,M12的坐标是关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网