题目内容
10.设Sn为等差数列{an}的前n项和,证明Sn,S2n-Sn,S3n-S2n成等差数列.分析 根据等差数列的性质,推出2(S2n-Sn)=Sn+(S3n-S2n),即可得到Sn,S2n-Sn,S3n-S2n,…为等差数列
解答 证明:设等差数列an的首项为a1,公差为d,
则Sn=a1+a2+…+an,S2n-Sn=an+1+an+2+…+a2n=a1+nd+a2+nd+…+an+nd=Sn+n2d,
同理:S3n-S2n=a2n+1+a2n+2+…+a3n=an+1+an+2+…+a2n+n2d=S2n-Sn+n2d,
∴2(S2n-Sn)=Sn+(S3n-S2n),
∴Sn,S2n-Sn,S3n-S2n是等差数列.
点评 此题考查学生灵活运用等差数列的通项与求和,比较基础.
练习册系列答案
相关题目
5.在△ABC中,若角A、B、C 的对边分别为a,b,c,且atanB=5,bsinA=4,则a等于( )
| A. | $\frac{15}{4}$ | B. | $\frac{25}{4}$ | C. | 5 | D. | $\frac{20}{3}$ |
4.已知两条不同的直线a,b,三个不同的平面α,β,γ,下列说法正确的是( )
| A. | 若a∥α,b⊥a,则b∥α | B. | 若a∥α,a∥β,则α∥β | C. | 若α⊥β,a⊥α,则a∥β | D. | 若α⊥γ,β∥γ,则α⊥β |
5.已知集合A={-1,0,1,2},B={x|x<2},则A∩B=( )
| A. | {-1,0,1} | B. | {-1,0,2} | C. | {-1,0} | D. | {0,1} |