题目内容
19.化简:1!+2•2!+3•3!+…+n•n!分析 根据 (n+1)!=n•n!+n!,得出n•n!=(n+1)!-n!,从而求出1!+2•2!+3•3!+…+n•n!的值.
解答 解:∵(n+1)!=(n+1)•n!=n•n!+n!,
∴n•n!=(n+1)!-n!,
∴1!+2•2!+3•3!+…+n•n!=(2!-1!)+(3!-2!)+(4!-3!)+…+[(n+1)!-n!]
=(n+1)!-1!.
点评 本题考查了排列数公式的应用问题,是基础题目.
练习册系列答案
相关题目
14.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\frac{\sqrt{2}}{2}$|$\overrightarrow{b}$|,且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥(3$\overrightarrow{a}$+2$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
11.已知f(x)=-x2+10,则f(x)在x=$\frac{3}{2}$处的瞬时变化率是( )
| A. | 3 | B. | -3 | C. | 2 | D. | -2 |
8.已知a>0,b>0且ab-(a+b)≥1,则( )
| A. | a+b≥2($\sqrt{2}$+1) | B. | a+b≤$\sqrt{2}$+1 | C. | a+b≤($\sqrt{2}$+1)2 | D. | a+b>2($\sqrt{2}$+1) |