题目内容
已知a1=b1=1,an+1=bn+n,bn+1=an+(-1)n,n∈N*.
(1)求a3,a5的值;
(2)求通项公式an;
(3)求证:
+
+
+…+
<
(1)求a3,a5的值;
(2)求通项公式an;
(3)求证:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 13 |
| 4 |
(1)b2=a1-1=0,∴a3=b2+2=2,a5=a3+3=5;
(2)由题意,a3=a1+1,a5=a3+3,,a2n-1=a2n-3+(2n-3),
∴a2n-1=a1+
=n2-2n+2;
同理,a2n=n2+n,∴an=
;
(3)当n≥3时,
=
<
=
(
-
),
而
=
=
-
,(n∈N*),∴
+
+
++
=(
+
++
)+(
+
++
)
<
+
+
(1+
-
-
)+(1-
)<1+
+
+1=
(2)由题意,a3=a1+1,a5=a3+3,,a2n-1=a2n-3+(2n-3),
∴a2n-1=a1+
| (1+2n-3)(n-1) |
| 2 |
同理,a2n=n2+n,∴an=
|
(3)当n≥3时,
| 1 |
| a2n-1 |
| 1 |
| n2-2n+2 |
| 1 |
| n(n-2) |
| 1 |
| 2 |
| 1 |
| n-2 |
| 1 |
| n |
而
| 1 |
| a2n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2n |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2n-1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a2n |
<
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 3 |
| 4 |
| 13 |
| 4 |
练习册系列答案
相关题目