题目内容
已知a1=b1=1,an+1=bn+n,bn+1=an+(-1)n+1n∈N*
(1)求数列{an}的通项
(2)求证:
<
(出题者个人认为:隔项数列很有可能成为今年的重点)
(1)求数列{an}的通项
(2)求证:
| 2n |
| k=1 |
| 1 |
| ak |
| 7 |
| 2 |
分析:(1)分别看数列项数为奇数和偶数时,利用叠加法求得通项公式an;
(2)分别看n为奇数和偶数时,把(1)中求得的通项公式代入
+
+
+…+
中,利用裂项法证明原式.
(2)分别看n为奇数和偶数时,把(1)中求得的通项公式代入
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
解答:解:(1)∵an+1=bn+n,bn+1=an+(-1)n+1n∈N*
∴bn=an-1+(-1)n
∴an+1=an-1+n+(-1)n
即an+1-an-1=n+(-1)n
∴a3-a1=3
a5-a3=5
…
a2n-1-a2n-3=2n-1
以上式子相加可得,a2n-1-a1=3+5+…+2n-1
∵a1=1
∴a2n-1=a1+
=n2
同理,a2n=n2-n+2,
∴an=
(2)∵
=
∴(
+
+…+
)=1+
+
+…+
<1+
+
+…+
=1+1-
+
-
+…+
-
=2-
而
=
<
=
-
∴
+
+…+
<
+1-
+
-
+…+
-
=
-
∴
+
+…+
=(
+
+…+
)+(
+
+…+
)
<2-
+
-
=
-
<
∴bn=an-1+(-1)n
∴an+1=an-1+n+(-1)n
即an+1-an-1=n+(-1)n
∴a3-a1=3
a5-a3=5
…
a2n-1-a2n-3=2n-1
以上式子相加可得,a2n-1-a1=3+5+…+2n-1
∵a1=1
∴a2n-1=a1+
| (3+2n-1)(n-1) |
| 2 |
同理,a2n=n2-n+2,
∴an=
|
(2)∵
| 1 |
| a2n-1 |
| 1 |
| n2 |
∴(
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2n-1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1•2 |
| 1 |
| 2•3 |
| 1 |
| (n-1)n |
=1+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
而
| 1 |
| a2n |
| 1 |
| n2-n+2 |
| 1 |
| n2-n |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| a2 |
| 1 |
| a4 |
| 1 |
| a2n |
| 1 |
| a2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 3 |
| 2 |
| 1 |
| n |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2n |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2n-1 |
| 1 |
| a2 |
| 1 |
| a4 |
| 1 |
| a2n |
<2-
| 1 |
| n |
| 3 |
| 2 |
| 1 |
| n |
| 7 |
| 2 |
| 2 |
| n |
| 7 |
| 2 |
点评:本题主要考查了数列的递推式求数列的通项公式和求和问题.考查了学生数列问题的综合把握.
练习册系列答案
相关题目