题目内容
(10分)已知, 在取何值时取得最大值、最小值?最大值、最小值各是多少?
当时,取得最小值;时,取得最大值13.
如图,在矩形ABCD中,已知AD=2,AB=,E、F、G、H分别是边AD、AB、BC、CD上的点,若AE=AF=CG=CH,问AE取何值时,四边形EFGH的面积最大?并求最大的面积。
(本小题共12分) 在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量与向量共线,且点An(n,an) (n∈N*)都在斜率为2的同一条直线l上. 若a1=-3,b1=10 (1)求数列{an}与{ bn }的通项公式;
(2)求当n取何值时△AnBnCn的面积Sn最小,并求出Sn的这个最小值。
(本题满分12分)已知是定义在上的奇函数,且当时,.
(1)求在上的解析式;
(2) 证明在上是减函数;
(3)当取何值时,在上有解.
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,A A1=AB=AC=1,AB⊥AC,M、N分别是CC1,BC的中点,点P在直线A1B1上,且
(1)证明:无论入取何值,总有AM⊥PN;
(2)当入取何值时,直线PN与平面ABC所成的角θ最大?
并求该角取最大值时的正切值。
(3)是否存在点P,使得平面PMN与平面ABC所成的二面
角为30º,若存在,试确定点P的位置,若不存在,请说明理由。
如图,已知三棱柱的侧棱与底面垂直,⊥AC,
M是的中点,N是BC的中点,点P在直线上,且满足.
(Ⅰ)当取何值时,直线PN与平面ABC所成的角最大?并求sin的值;
(Ⅱ)若平面PMN与平面ABC所成的二面角为,试确定点P的位置.