题目内容
设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
)(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
| 1 |
| bn-1 |
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1.
(Ⅰ)∵tSn-(t+1)Sn-1=t,(n≥2)①tSn-1-(t+1)Sn-2=t,(n≥3)②
①-②,得tan-(t+1)an-1=0.
∴
=
(n∈N*,n≥3).
又由t(1+a2)-(t+1)=t.得a2=
.
又∵a1=1,∴
=
.
所以{an}是一个首项为1,公比为
的等比数列.
(Ⅱ)由f(t)=
,得bn=f(
)=1+bn-1(n≥2,n∈N*).
∴{bn}是一个首项为1,公差为1的等差数列.
于是bn=n.
(Ⅲ)由bn=n,可知{b2n-1}和{b2n}是首项分别为1和2,公差均为2的等差数列,
于是b2n=2n.
∴b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1?
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-2(b2+b4+…+b2n)
=-2•
=-2n2-2n.
①-②,得tan-(t+1)an-1=0.
∴
| an |
| an-1 |
| t+1 |
| t |
又由t(1+a2)-(t+1)=t.得a2=
| t+1 |
| t |
又∵a1=1,∴
| a2 |
| a1 |
| t+1 |
| t |
所以{an}是一个首项为1,公比为
| t+1 |
| t |
(Ⅱ)由f(t)=
| t+1 |
| t |
| 1 |
| bn-1 |
∴{bn}是一个首项为1,公差为1的等差数列.
于是bn=n.
(Ⅲ)由bn=n,可知{b2n-1}和{b2n}是首项分别为1和2,公差均为2的等差数列,
于是b2n=2n.
∴b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1?
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-2(b2+b4+…+b2n)
=-2•
| (2+2n)n |
| 2 |
练习册系列答案
相关题目