题目内容
13.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b-a,用[x]表示不超过x的最大整数,例如[3.2]=3,[-2.3]=-3.记{x}=x-[x],设f(x)=[x]•{x},g(x)=x-1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有( )| A. | d=1 | B. | d=2 | C. | d=3 | D. | d=4 |
分析 先化简f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,再化简f(x)<(x),再分类讨论:①当x∈[0,1)时,②当x∈[1,2)时③当x∈[2,3]时,求出f(x)<g(x)在0≤x≤3时的解集的长度.
解答 解:f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1
f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1
当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈∅;
当x∈[1,2)时,[x]=1,上式可化为0>0,∴x∈∅;
当x∈[2,3]时,[x]-1>0,上式可化为x<[x]+1,∴x∈[2,3];
∴f(x)<g(x)在0≤x≤3时的解集为[2,3],故d=1,
故选:A.
点评 本题主要考查了抽象函数及其应用,同时考查了创新能力,以及分类讨论的思想和转化思想,属于中当题.
练习册系列答案
相关题目
3.在空间直角坐标系中,点P(1,3,6)关于x轴对称的点的坐标是( )
| A. | (1,3,-6) | B. | (-1,3,-6) | C. | (-1,-3,6) | D. | (1,-3,-6) |
5.在正方形ABCD之内随机选取一点M到点D的距离小于正方形的边长的概率是( )
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
2.三棱柱ABC-A1B1C1中,侧棱AA1丄底面A1B1C1,底面三角形是正三角形,E是BC中点,则下列叙述正确的是( )
| A. | CC1与B1E是异面直线 | B. | AC丄平面ABB1A1 | ||
| C. | AE 丄 B1C1 | D. | A1C1∥平面AB1E |
3.设函数f(x)=$\frac{1}{x}$-$\frac{m}{{x}^{2}}$-$\frac{x}{3}$,若?x∈(0,+∞),f(x)<0恒成立,则实数m的取值范围为( )
| A. | ($\frac{2}{3}$,1) | B. | ($\frac{2}{3}$,2) | C. | ($\frac{2}{3}$,+∞) | D. | (-∞,$\frac{2}{3}$) |