题目内容

13.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b-a,用[x]表示不超过x的最大整数,例如[3.2]=3,[-2.3]=-3.记{x}=x-[x],设f(x)=[x]•{x},g(x)=x-1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有(  )
A.d=1B.d=2C.d=3D.d=4

分析 先化简f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,再化简f(x)<(x),再分类讨论:①当x∈[0,1)时,②当x∈[1,2)时③当x∈[2,3]时,求出f(x)<g(x)在0≤x≤3时的解集的长度.

解答 解:f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1
f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1
当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈∅;
当x∈[1,2)时,[x]=1,上式可化为0>0,∴x∈∅;
当x∈[2,3]时,[x]-1>0,上式可化为x<[x]+1,∴x∈[2,3];
∴f(x)<g(x)在0≤x≤3时的解集为[2,3],故d=1,
故选:A.

点评 本题主要考查了抽象函数及其应用,同时考查了创新能力,以及分类讨论的思想和转化思想,属于中当题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网