题目内容
2.经过两点A(4,2y+1)B(2,-3)的直线的倾斜角为$\frac{3π}{4}$,则|$\overrightarrow{AB}$|等于( )| A. | 8 | B. | 4 | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
分析 由斜率公式求出y,从而求出A点,由此能求出|$\overrightarrow{AB}$|的值.
解答 解:∵经过两点A(4,2y+1)B(2,-3)的直线的倾斜角为$\frac{3π}{4}$,
∴tan$\frac{3π}{4}$=$\frac{2y+1+3}{4-2}$,解得y=-3,
∴A(4,-5),
∴|$\overrightarrow{AB}$|=$\sqrt{(4-2)^{2}+(-5+3)^{2}}$=2$\sqrt{2}$.
故选:C.
点评 本题考查线段长的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.
练习册系列答案
相关题目
13.某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布表如下
(1)求频率分布表中x的值;
(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
(3)现有5名上学路上时间小于40分钟的新生,其中3人上学路上时间不小于20分钟,则从这5人中任选2人,设这2人中上学路上时间小于20分钟人数为X,求X的分布列和数学期望.
(1)求频率分布表中x的值;
(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
(3)现有5名上学路上时间小于40分钟的新生,其中3人上学路上时间不小于20分钟,则从这5人中任选2人,设这2人中上学路上时间小于20分钟人数为X,求X的分布列和数学期望.
| 分组 | 频率 |
| [0,20) | 0.25 |
| [20,40) | x |
| [40,60) | 0.13 |
| [60,80) | 0.06 |
| [80,100) | 0.06 |
10.“a=-5”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
17.F1、F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点,P是C上任一点,PF1交y轴于Q点,若P、Q、O、F2四点共圆且$\frac{P{F}_{1}}{P{F}_{2}}$+$\frac{P{F}_{2}}{P{F}_{1}}$=$\frac{8}{3}$,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
7.线段x-2y+1=0(-1≤x≤3)的垂直平分线方程为( )
| A. | x+2y-3=0 | B. | 2x+y-3=0 | C. | 2x+y-1=0 | D. | 2x-y-1=0 |