题目内容

8.已知△ABC的内角A,B,C的对边分别为a,b,c,且 a=b,sin2B=2sinAsinC则cosB=$\frac{1}{4}$.

分析 由正弦定理得b2=2ac,从而a=b=2c,由此利用余弦定理能求出cosB.

解答 解:∵△ABC的内角A,B,C的对边分别为a,b,c,且 a=b,sin2B=2sinAsinC,
∴由正弦定理得b2=2ac,
∴a=b=2c,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{c}^{2}}{2ac}$=$\frac{c}{2a}$=$\frac{c}{4c}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查角的余弦值的求法,考查正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网