题目内容
8.如图,在菱形ABCD中,AB=2,∠ABC=60°,BD∩AC=O,现将其沿菱形对角线BD折起得空间四边形EBCD,使EC=$\sqrt{2}$.(Ⅰ)求证:EO⊥CD.
(Ⅱ)求点O到平面EDC的距离.
分析 (Ⅰ)证明:EO⊥平面BCD,即可证明EO⊥CD.
(Ⅱ)利用等体积方法,求点O到平面EDC的距离.
解答 (Ⅰ)证明:由题意,EO=OC=1,EC=$\sqrt{2}$,
∴EO2+OC2=EC2,∴EO⊥OC,
∵EO⊥BD,OC∩BD=O,
∴EO⊥平面BCD,
∵CD?平面BCD,
∴EO⊥CD.
(Ⅱ)解:△EDC中,ED=DC=2,EC=$\sqrt{2}$,S△EDC=$\frac{1}{2}×\sqrt{2}×\sqrt{4-\frac{1}{2}}$=$\sqrt{7}$,
设点O到平面EDC的距离为h,则由等体积可得$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×1=\frac{1}{3}×\sqrt{7}h$,
∴h=$\frac{\sqrt{21}}{14}$.
点评 本题考查线面垂直的判定与性质,考查等体积方法求点到平面的距离,属于中档题.
练习册系列答案
相关题目
18.已知a,b是实数,则“a>1”是“a>2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 既不充分也不必要条件 | D. | 充要条件 |
19.己知命题p:“a>b”是“2a>2b”的充要条件;q:?x∈R,ex<lnx,则( )
| A. | ¬p∨q为真命题 | B. | p∧¬q为假命题 | C. | p∧q为真命题 | D. | p∨q为真命题 |
13.复数2-3i的虚部为( )
| A. | 3 | B. | 3i | C. | -3 | D. | -3i |
17.定义在$[{\frac{1}{π},π}]$上的函数f(x),满足$f(x)=f(\frac{1}{x})$,且当$x∈[{\frac{1}{π},1}]$时,f(x)=lnx,若函数g(x)=f(x)-ax在$[{\frac{1}{π},π}]$上有零点,则实数a的取值范围是( )
| A. | $[{-\frac{lnπ}{π},0}]$ | B. | [-πlnπ,0] | C. | $[{-\frac{1}{e},\frac{lnπ}{π}}]$ | D. | $[{-\frac{e}{2},-\frac{1}{π}}]$ |
18.《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为( )
| A. | $\frac{2}{3}$钱 | B. | $\frac{4}{3}$钱 | C. | $\frac{5}{6}$钱 | D. | $\frac{3}{2}$钱 |