题目内容
1.在△ABC中,已知$\sqrt{3}asinC-c({2+cosA})=0$,其中角A、B、C所对的边分别为a、b、c.求(1)求角A的大小;
(2)若△ABC的最大边的边长为$\sqrt{13}$,且sinC=3sinB,求最小边长.
分析 (1)由正弦定理,得$\sqrt{3}sinAsinC-sinC({2+cosA})=0$,从而$\sqrt{3}sinA-cosA=2$,由此能求出角A.
(2)求出$a=\sqrt{13}$,由sinC=3sinB,利用正弦定理得c=3b,从而最小边为长b,由此根据余弦定理,能求出最小边长为1.
解答 解:(1)∵在△ABC中,$\sqrt{3}asinC-c({2+cosA})=0$,
∴由正弦定理,得$\sqrt{3}sinAsinC-sinC({2+cosA})=0$,
∵sinC≠0,∴$\sqrt{3}sinA-cosA=2$,
∴$sin({A-\frac{π}{6}})=1$,且A∈(0,π)
∴$A-\frac{π}{6}=\frac{π}{2}$,$A=\frac{2π}{3}$-----(6分)
(2)∵A=$\frac{2π}{3}$,△ABC的最大边的边长为$\sqrt{13}$,
∴a为最大边,故$a=\sqrt{13}$,
由sinC=3sinB,利用正弦定理得c=3b,
∴最小边为长b.
根据余弦定理,有a2=b2+c2-2bccosA
∴13=b2+9b2+3b2,
解得b=1,故最小边长为1.-----(12分)
点评 本题考查角的大小、三角形中最小边长的求法,考查正弦定理、余弦定理、三角函数恒等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目
12.若函数$f(x)=4sinωx•{sin^2}({\frac{ωx}{2}+\frac{π}{4}})-2{sin^2}ωx(ω>0)$在$[{-\frac{π}{2},\frac{2π}{3}}]$上是增函数,则ω的取值范围是( )
| A. | (0,1] | B. | $({0,}\right.\left.{\frac{3}{4}}]$ | C. | [1,+∞) | D. | $[{\frac{3}{4}}\right.,+∞)$ |
16.下列几种推理过程是演绎推理的是( )
| A. | 比较5和ln3的大小 | |
| B. | 由平面三角形的性质,推测空间四面体的性质 | |
| C. | 某高中高二年级有15个班级,1班有51人,2班有53人,3班52人,由此推测各班都超过50人 | |
| D. | 由股票趋势图预测股价 |
11.甲、乙、丙3人从1楼乘电梯去商场的3到9楼,每层楼最多下2人,则下电梯的方法有( )
| A. | 210种 | B. | 84种 | C. | 343种 | D. | 336种 |