题目内容

精英家教网如图所示,在△ABC中,DE∥BC,
S△ADE
S△ABC
=
4
9
.求:(1)
AE
EC
;(2)
S△ADE
S△CDE
分析:(1)根据三角形中,DE∥BC,得到两个三角形相似,根据相似三角形的性质,相似三角形的面积之比等于对应边之比的平方,得到边AE与边BC的比值的平方,开方运算得到边长之比.
(2)本题求两个三角形的面积之比,注意到这两个三角形是同高的三角形,所以只要看一下这两个三角形作为边的关系即可,根据在上一问中得到的AE与EC 的长度之比得到结果.
解答:精英家教网解:(1)∵DE∥BC,
∴△ADE∽△ABC.
S△ADE
S△ABC
=(
AE
AC
2=
4
9

AE
AC
=
2
3

AE
EC
=
2
1

(2)如图,作DF⊥AC,垂足为F.
则S△ADE=
1
2
DF•AE,
S△CDE=
1
2
DF•EC.
S△ADE
S△CDE
=
1
2
DF•AE
1
2
DF•EC
=
AE
EC
=
2
1
点评:本题是一个证明三角形相似的题目,题目用到相似三角形的判定定理,用到相似三角形的面积,在求两个三角形面积之比的方法,是一个初中课本上出现过的问题,是一个基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网