题目内容

10.已知直线x+y-2a=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=(  )
A.$4±\sqrt{15}$B.$±\frac{1}{3}$C.1或7D.$1±\sqrt{6}$

分析 根据△ABC为等边三角形,得到圆心到直线的距离为$\sqrt{3}$,根据点到直线的距离公式即可得到结论.

解答 解:圆(x-1)2+(y-a)2=4的圆心C(1,a),半径R=2,
∵直线和圆相交,△ABC为等边三角形,
∴圆心到直线的距离为Rsin60°=$\sqrt{3}$,
即d=$\frac{|1+a-2a|}{\sqrt{2}}$=$\sqrt{3}$,
解得a=1±$\sqrt{6}$,
故选:D.

点评 本题主要考查直线和圆的位置关系的应用,根据△ABC为等边三角形,得到圆心到直线的距离是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网