题目内容

OA
=(2,-1),
OB
=(3,0),
OC
=(m,3)

(1)当m=8时,将
OC
OA
OB
表示;
(2)若A、B、C三点能构成三角形,求实数m应满足的条件.
(1)当m=8时,
OC
=(8,3)

OC
OA
OB
,则(8,3)=λ(2,-1)+μ(3,0)=(2λ+3μ,-λ),
2λ+3μ=8
-λ=3
,解得
λ=-3
μ=
14
3

所以
OC
=-3
OA
+
14
3
OB

(2)由
OA
=(2,-1),
OB
=(3,0),
OC
=(m,3)

AB
=
OB
-
OA
=(3,0)-(2,-1)=(1,1)

AC
=
OC
-
OA
=(m,3)-(2,-1)=(m-2,4)

若A、B、C三点能构成三角形,
AB
AC
不共线.由1×4-1×(m-2)=0得:m=6.
所以A、B、C三点能构成三角形的实数m应满足m≠6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网