题目内容

OA
=(t,1)(t∈Z)
OB
=(2,4)
,满足|
OA
|≤3
,则当△OAB是直角三角形时t的值为
 
分析:根据
OB
=(2,4)
,可求出OB=2
5
>OA,根据△OAB是直角三角形,分类讨论,当∠AOB=90°时或当∠OBA=90°时,或∠OAB=90°,利用向量垂直的充要条件
a
=(x1y1)
b
=(x2y2)
a
b
?x1x2+y1y2=0,即可求得结果.
解答:解:∵OB=2
5
>OA
∴1°当∠AOB=90°时,有2t+4=0,
解得t=-2,
2°当∠OBA=90°时,有
BA
=
OA
-
OB
=(t-2,-3)
OB
BA
=2(t-2)-12=0,
解得t=8,
因为|
OA
|≤3
,所以t=8,不满足题意,舍去,
3°当∠OAB=90°,
OA
BA
=0

t(t-2)-3=0,解得t=-1或t=3(舍去);
综上t=-2,或t=-1;
故答案为:-2或-1.
点评:本题考查利用向量的数量积判断两向量的垂直关系,注意向量垂直的充要条件
a
=(x1y1)
b
=(x2y2)
a
b
?x1x2+y1y2=0,和三角形是直角三角形要分类讨论,体现了分类讨论的思想,同时考查了运算能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网