题目内容

5.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,asinC=csinB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若B=30°,a=2,求BC边上中线AD的长.

分析 (Ⅰ)由已知等式,利用正弦定理可得:ac=cb,解得:a=b,即可得解△ABC为等腰三角形.
(Ⅱ)由已知可求C=120°,BD=1,利用余弦定理可求AB,在△ABD中,利用余弦定理可求AD的值.

解答 解:(Ⅰ)∵asinC=csinB.
∴利用正弦定理可得:ac=cb,解得:a=b,
∴△ABC为等腰三角形.
(Ⅱ)如图所示:∵BC=AC,B=30°,BC=2,
∴C=120°,BD=1,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}-2•AC•BC•cosC}$=$\sqrt{4+4-2×2×2×(-\frac{1}{2})}$=2$\sqrt{3}$,
∴△ABD中,AD=$\sqrt{A{B}^{2}+B{D}^{2}-2•AB•BD•cosB}$=$\sqrt{12+1-2×2\sqrt{3}×1×\frac{\sqrt{3}}{2}}$=$\sqrt{7}$.

点评 本题主要考查了正弦定理,余弦定理,三角形内角和定理的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网