题目内容
已知分别为双曲线的左、右焦点,P为双曲线右支上的任意一点,若的最小值为8,则双曲线的离心率的取值范围是( )
A. B. C. D.
已知函数y=f(x)是定义在R上的偶函数,且当x>0时,不等式若则之间的大小关系为( )
A.a>c>b B.c>a>b C.b>a>c D.c>b>a
设数列的前n项和为.且,则=( )
已知函数在处的切线与直线垂直,函数.
(1)求实数的值;
(2)若函数存在单调递减区间,求实数b的取值范围;
(3)设是函数的两个极值点,若,求的最小值.
雅礼中学教务处采用系统抽样方法,从学校高三年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号,求得间隔数k=20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是( )
A.177 B.157 C.417 D.367
已知数列{}的各项均不为0,其前项和为Sn,且满足=,=.
(Ⅰ)求的值;
(Ⅱ)求{}的通项公式;
(Ⅲ)若,求的最小值.
已知函数
(Ⅱ)求函数的最小正周期和单调递增区间.
如图,已知矩形所在平面与等腰直角三角形所在平面互相垂直,,,为线段的中点.
(Ⅰ) 证明:;
(Ⅱ) 求与平面所成的角的余弦值.
(Ⅰ)讨论函数的单调性
(Ⅱ)若函数与函数的图像关于原点对称且就函数 分别求解下面两问:
①问是否存在过点的直线与函数的图象相切? 若存在,有多少条?若不存在,说明理由.
②求证:对于任意正整数,均有(为自然对数的底数)