题目内容
设f(x)=
,且f(x)的图象过点(
,
).
(1)求f(x)表达式;
(2)计算f(x)+f(1-x);
(3)试求f(
)+f(
)+f(
)+…+f(
)+f(
)的值.
| 4x |
| 4x+a |
| 1 |
| 2 |
| 1 |
| 2 |
(1)求f(x)表达式;
(2)计算f(x)+f(1-x);
(3)试求f(
| 1 |
| 2011 |
| 2 |
| 2011 |
| 3 |
| 2011 |
| 2009 |
| 2011 |
| 2010 |
| 2011 |
分析:(1)根据f(x)=
的图象过点(
,
),求得a的值,可得函数f(x)的解析式.
(2)化简f(x)+f(1-x)=
+
,变形可得答案.
(3)要求的式子即[f(
)+f(
)]+[f(
)+f(
)]+…+[f(
)+f(
)],再利用(2)的结论求得结果.
| 4x |
| 4x+a |
| 1 |
| 2 |
| 1 |
| 2 |
(2)化简f(x)+f(1-x)=
| 4x |
| 4x+2 |
| 41-x |
| 41-x+2 |
(3)要求的式子即[f(
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 2 |
| 2011 |
| 2009 |
| 2011 |
| 1005 |
| 2011 |
| 1006 |
| 2011 |
解答:解:(1)∵f(x)=
,且f(x)的图象过点(
,
),
可得
=
,解得a=2,∴f(x)=
.
(2)f(x)+f(1-x)=
+
=
+
=1.
(3)f(
)+f(
)+f(
)+…+f(
)+f(
)
=[f(
)+f(
)]+[f(
)+f(
)]+…+[f(
)+f(
)]
=1005×1=1005.
| 4x |
| 4x+a |
| 1 |
| 2 |
| 1 |
| 2 |
可得
| 2 |
| 2+a |
| 1 |
| 2 |
| 4x |
| 4x+2 |
(2)f(x)+f(1-x)=
| 4x |
| 4x+2 |
| 41-x |
| 41-x+2 |
| 4x |
| 4x+2 |
| 4 |
| 4+2•4x |
(3)f(
| 1 |
| 2011 |
| 2 |
| 2011 |
| 3 |
| 2011 |
| 2009 |
| 2011 |
| 2010 |
| 2011 |
=[f(
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 2 |
| 2011 |
| 2009 |
| 2011 |
| 1005 |
| 2011 |
| 1006 |
| 2011 |
=1005×1=1005.
点评:本题主要考查用待定系数法求函数的解析式,求函数的值,属于中档题.
练习册系列答案
相关题目