题目内容

15.函数f(x)=Asin($ωx+\frac{π}{6}$)(A>0,ω>0)的图象与x轴的交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

分析 由条件利用y=Asin(ωx+φ)的图象变换规律,诱导公式,得出结论.

解答 解:由题意可得,函数f(x)=Asin($ωx+\frac{π}{6}$)(A>0,ω>0)的周期为$\frac{2π}{ω}$=2•$\frac{π}{2}$,
求得ω=2,f(x)=Asin(2x+$\frac{π}{6}$).
故把f(x)=Asin(2x+$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位长度,
可得 y=Asin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=Acos2x的图象,
故选:A.

点评 本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网