题目内容
计算下列定积分.
(1)∫-43|x|dx
(2)
dx.
(1)∫-43|x|dx
(2)
| ∫ | n+12 |
| 1 |
| x-1 |
(1)∫-43|x|dx=∫-40(-x)dx+∫03xdx=-
x2
+
x2
=
(2)
dx=ln(x-1)|2n+1=ln(n+1-1)-ln(2-1)=lnn.
| 1 |
| 2 |
| | | 0-4 |
| 1 |
| 2 |
| | | 30 |
| 25 |
| 2 |
(2)
| ∫ | n+12 |
| 1 |
| x-1 |
练习册系列答案
相关题目