题目内容

12.已知数列{an}满足a1=2,an=2-$\frac{1}{{a}_{n-1}}$,bn=$\frac{1}{{a}_{n}-1}$,解答下列问题:
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的通项公式.

分析 (1)由数列{an}满足a1=2,an=2-$\frac{1}{{a}_{n-1}}$,bn=$\frac{1}{{a}_{n}-1}$,作差bn+1-bn=1,即可证明;
(2)利用等差数列的通项公式可得bn,进而得到an

解答 (1)证明:∵数列{an}满足a1=2,an=2-$\frac{1}{{a}_{n-1}}$,bn=$\frac{1}{{a}_{n}-1}$,
∴bn+1-bn=$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{1}{2-\frac{1}{{a}_{n}}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{{a}_{n}}{{a}_{n}-1}$-$\frac{1}{{a}_{n}-1}$=1,
∴数列{bn}是等差数列,首项与公差都为1.
(2)由(1)可得:bn=1+(n-1)=n,
∴bn=$\frac{1}{{a}_{n}-1}$=n,解得an=1+$\frac{1}{n}$.

点评 本题考查了递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网