题目内容
15.分析 在△ABD,△BCD中,利用余弦定理表示BD,可得AB,即可求S1-S2的最大值.
解答 解:依题意可知,∠A+∠C=π,即∠A=π-∠C,设AB=x,则:
在△ABD中,由余弦定理得:BD2=x2+42-2×x×4cosA=x2+16-8xcosA,
在△BCD中,由余弦定理得:BD2=62+42-2×6×4cosC=52-48cosC=52+48cosA,
由x2+16-8xcosA=52+48cosA,
∴x=6-8cosA,
∴S1-S2=$\frac{1}{2}•4•6$sinC-$\frac{1}{2}$x•4sinA=16sinAcosA=8sin2A,
∴S1-S2的最大值是8.
点评 本题考查余弦定理的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
6.已知f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为( )
| A. | ($\frac{{e}^{2}+1}{e}$,+∞) | B. | (-∞,-$\frac{{e}^{2}+1}{e}$) | C. | (-$\frac{{e}^{2}+1}{e}$,-2) | D. | (2,$\frac{{e}^{2}+1}{e}$) |
10.已知地球半径为R,地球上某地A的纬度是北纬60°,某同步卫星在赤道上空6R的轨道上,它每24小时绕地球一周,所以它定位于赤道上某一点B的上空C处,如果点B与点A在同一子午线上,在A第观察此卫星的仰角为α,那么sinα的值为( )
| A. | $\frac{5\sqrt{43}}{86}$ | B. | $\frac{\sqrt{21}}{21}$ | C. | $\frac{3\sqrt{21}}{21}$ | D. | $\frac{3\sqrt{21}}{42}$ |
20.已知空间四边形OABC,点M在线段OA上,且OM=2MA,点N为BC的中点,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{MN}$=( )
| A. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{2}{3}$$\overrightarrow c$ | B. | -$\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$ | D. | $\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}$$\overrightarrow c$ |