题目内容

2.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},写出满足条件的事件是A={(x,y)|0≤x≤1,0≤y≤1,y-x<$\frac{1}{2}$或y<x},算出事件对应的集合表示的面积,根据几何概型概率公式得到结果

解答 解:由题意知本题是一个几何概型,设甲到的时间为x,乙到的时间为y,
则试验包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},
事件对应的集合表示的面积是s=1,
满足条件的事件是A={(x,y)|0≤x≤1,0≤y≤1,y-x<$\frac{1}{2}$或y>x},
则B(0,$\frac{1}{2}$),D($\frac{1}{2}$,1),C(0,1),
则事件A对应的集合表示的面积是1-$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$+$\frac{1}{2}$×1×1=$\frac{3}{8}$,根据几何概型概率公式得到P=$\frac{\frac{3}{8}}{1}=\frac{3}{8}$
所以甲、乙两人能见面的概率是1-$\frac{5}{8}=\frac{3}{8}$;
故选A.

点评 本题主要考查几何概型的概率计算,对于这样的问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网