题目内容

(1)求证:2n+2•3n+5n-4能被25整除.
(2)求证:
C
0
n
-
1
2
C
1
n
+
1
3
C
2
n
-
1
4
C
3
n
+…+(-1)n
1
n+1
C
n
n
=
1
n+1
分析:(1)用数学归纳法证明:①当n=1时,2n+2•3n+5n-4=8×3+5-4=25,能被25整除;②假设n=k时,2k+2•3k+5k-4能被25整除,由此导出当n=k+1时,2k+3•3k+1+5(k+1)-4能被25整除即可.
(2))由
1
r+1
C
r
n
=
1
r+1
n!
r!(n-r)!
=
1
n+1
C
r+1
n+1
,能够证明
C
0
n
-
1
2
C
1
n
+
1
3
C
2
n
-
1
4
C
3
n
+…+(-1)n
1
n+1
C
n
n
=
1
n+1
解答:证明:(1)用数学归纳法证明:
①当n=1时,2n+2•3n+5n-4=8×3+5-4=25,能被25整除,成立;
②假设n=k时,成立,即2k+2•3k+5k-4能被25整除,
则当n=k+1时,2k+3•3k+1+5(k+1)-4=6(2k+2•3k)+5k+5-4
=(2k+2•3k+5k-4)+5(2k+2•3k)+5
=(2k+2•3k+5k-4)+20•6k+5,
∵2k+2•3k+5k-4能被5整除,20•6k+5能被25整除,
∴(2k+2•3k+5k-4)+20•6k+5能被25整除,即n=k+1时成立.
由①②知2n+2•3n+5n-4能被25整除.
(2)∵
1
r+1
C
r
n
=
1
r+1
n!
r!(n-r)!
=
1
n+1
×
(n+1)!
(r+1)!(n-r)!
=
1
n+1
C
r+1
n+1

C
0
n
-
1
2
C
1
n
+
1
3
C
2
n
-
1
4
C
3
n
+…+(-1)n
1
n+1
C
n
n

=
1
n+1
[
C
1
n+1
-
C
2
n+1
+
C
3
n+1
+…+(-1)nC
 
n+1
n+1
],
当n为奇数时,
C
1
n+1
-
C
2
n+1
+
C
3
n+1
+…+(-1)nC
 
n+1
n+1

=(
C
1
n+1
+
C
3
n+1
+…+
C
n
n+1
)-(
C
2
n+1
+
C
4
n+1
+…+
C
n+1
n+1

=
C
0
n+1
=1.
当n为偶数时,
C
1
n+1
-
C
2
n+1
+
C
3
n+1
+…+(-1)nC
 
n+1
n+1

=(
C
1
n+1
+
C
3
n+1
+…+
C
n+1
n+1
)+(
C
2
n+1
+
C
4
n+1
+…+C
C
n
n+1

=
C
0
n+1
=1.
1
n+1
[
C
1
n+1
-
C
2
n+1
+
C
3
n+1
+…+(-1)nC
 
n+1
n+1
]=
1
n+1

C
0
n
-
1
2
C
1
n
+
1
3
C
2
n
-
1
4
C
3
n
+…+(-1)n
1
n+1
C
n
n
=
1
n+1
点评:本题考查数学归纳法的应用,考查二项式定理的应用.解题时要认真审题,仔细分析组合数性质,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网