题目内容

已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*),
(1)求证数列{an+2}为等比数列;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列{
bn
an+2
}的前n项和,求证:Tn
3
2
分析:(1)由Sn=2an-2n(n∈N*)⇒sn-1=2an-1-2(n-1)(n≥2),两式相减后整理可得
an+2
an-1+2
=2(n≥2),从而可证数列{an+2}为等比数列;
(2)由(1)知an+2=4×2n-1,从而可得bn=n+1,于是
bn
an+2
=
n+1
2n+1
,Tn=
2
22
+
3
23
+
4
24
+…+
n
2n
+
n+1
2n+1
,利用错位相减法可求得Tn,继而可证结论.
解答:解:(1)由Sn=2an-2n(n∈N*)可得sn-1=2an-1-2(n-1)(n≥2),
两式相减得:an=2an-1+2(n≥2),
∴an+2=2(an-1+2)(n≥2),
an+2
an-1+2
=2(n≥2),
∴数列{an+2}为等比数列,又a1=2a1-2,故a1=2,
∴数列{an+2}为首项为4,公比为2的等比数列.
(2)由(1)可知an+2=4×2n-1
∴bn=log2(4×2n-1)=log22n+1=n+1,
bn
an+2
=
n+1
2n+1

∴Tn=
2
22
+
3
23
+
4
24
+…+
n
2n
+
n+1
2n+1
,①
1
2
Tn=
2
23
+
3
24
+…+
n
2n+1
+
n+1
2n+2
,②
∴①-②得:
1
2
Tn=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=
1
2
+
1
23
[1-(
1
2
)
n-1
]
1-
1
2
-
n+1
2n+2

=
3
4
-
1
2n+1
-
n+1
2n+2

∴Tn=
3
2
-
1
2n
-
n+1
2n+1
3
2
点评:本题考查数列的求和,着重考查等比关系的确定与错位相减法求和,考查推理与运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网