题目内容
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*),
(1)求证数列{an+2}为等比数列;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列{
}的前n项和,求证:Tn<
.
(1)求证数列{an+2}为等比数列;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列{
| bn |
| an+2 |
| 3 |
| 2 |
分析:(1)由Sn=2an-2n(n∈N*)⇒sn-1=2an-1-2(n-1)(n≥2),两式相减后整理可得
=2(n≥2),从而可证数列{an+2}为等比数列;
(2)由(1)知an+2=4×2n-1,从而可得bn=n+1,于是
=
,Tn=
+
+
+…+
+
,利用错位相减法可求得Tn,继而可证结论.
| an+2 |
| an-1+2 |
(2)由(1)知an+2=4×2n-1,从而可得bn=n+1,于是
| bn |
| an+2 |
| n+1 |
| 2n+1 |
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n |
| 2n |
| n+1 |
| 2n+1 |
解答:解:(1)由Sn=2an-2n(n∈N*)可得sn-1=2an-1-2(n-1)(n≥2),
两式相减得:an=2an-1+2(n≥2),
∴an+2=2(an-1+2)(n≥2),
∴
=2(n≥2),
∴数列{an+2}为等比数列,又a1=2a1-2,故a1=2,
∴数列{an+2}为首项为4,公比为2的等比数列.
(2)由(1)可知an+2=4×2n-1,
∴bn=log2(4×2n-1)=log22n+1=n+1,
∴
=
,
∴Tn=
+
+
+…+
+
,①
∴
Tn=
+
+…+
+
,②
∴①-②得:
Tn=
+
+
+…+
-
=
+
-
=
-
-
,
∴Tn=
-
-
<
.
两式相减得:an=2an-1+2(n≥2),
∴an+2=2(an-1+2)(n≥2),
∴
| an+2 |
| an-1+2 |
∴数列{an+2}为等比数列,又a1=2a1-2,故a1=2,
∴数列{an+2}为首项为4,公比为2的等比数列.
(2)由(1)可知an+2=4×2n-1,
∴bn=log2(4×2n-1)=log22n+1=n+1,
∴
| bn |
| an+2 |
| n+1 |
| 2n+1 |
∴Tn=
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n |
| 2n |
| n+1 |
| 2n+1 |
∴
| 1 |
| 2 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
| n+1 |
| 2n+2 |
∴①-②得:
| 1 |
| 2 |
| 2 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 1 |
| 2 |
| ||||
1-
|
| n+1 |
| 2n+2 |
=
| 3 |
| 4 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
∴Tn=
| 3 |
| 2 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
| 3 |
| 2 |
点评:本题考查数列的求和,着重考查等比关系的确定与错位相减法求和,考查推理与运算能力,属于中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |