题目内容
已知数列{an}的前n项和为Sn,满足an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
(1)求证Sn=2n-1an
(2)设bn=
求数列{bn}的前n项和Tn.
(1)求证Sn=2n-1an
(2)设bn=
| an | an+1 |
分析:(1)利用数列递推式,可得
-
=2n-1,构建新数列,利用叠加法,即可证得结论;
(2)再写一式,两式相减,可得数列的通项,分组求和,即可得到结论.
| Sn+1 |
| an+1 |
| Sn |
| an |
(2)再写一式,两式相减,可得数列的通项,分组求和,即可得到结论.
解答:(1)证明:∵an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
∴
-
=2n-1
令cn=
,则cn+1-cn=2n-1
利用叠加法可得:cn-c1=20+21+…+2n-2=
=2n-1-1
∵c1=
=1,∴cn=2n-1
∴Sn=2n-1an;
(2)解:由(1)知,Sn+1=2nan+1
两式相减可得an+1=2nan+1-2n-1an
∴bn=
=
=2(1-
)
∴Tn=
-2(
+
+…+
)=
+
.
∴
| Sn+1 |
| an+1 |
| Sn |
| an |
令cn=
| Sn |
| an |
利用叠加法可得:cn-c1=20+21+…+2n-2=
| 1-2n-1 |
| 1-2 |
∵c1=
| S1 |
| a1 |
∴Sn=2n-1an;
(2)解:由(1)知,Sn+1=2nan+1
两式相减可得an+1=2nan+1-2n-1an
∴bn=
| an |
| an+1 |
| 2n-1 |
| 2n-1 |
| 1 |
| 2n |
∴Tn=
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n-4 |
| 2 |
| 1 |
| 2n-1 |
点评:本题考查数列递推式,考查叠加法的运用,考查数列的求和,确定数列的通项是关键.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |