题目内容
若不等式|x-2|+|x-3|>|k-1|对任意的x∈R恒成立,则实数k的取值范围为 .
考点:绝对值不等式
专题:计算题,不等式的解法及应用
分析:根据绝对值的意义可得|x-2|+|x-3|的最小值为1,由 1>|k-1|,解绝对值不等式求得实数k的取值范围.
解答:
解:根据绝对值的意义可得|x-2|+|x-3|表示数轴上的x对应点到2和3对应点的距离之和,它的最小值为1,
再由不等式|x-2|+|x-3|>|k-1|对任意的x∈R恒成恒成立,可得 1>|k-1|,
即-1<k-1<1,解得 0<k<2,故实数k的取值范围是(0,2),
故答案为:(0,2).
再由不等式|x-2|+|x-3|>|k-1|对任意的x∈R恒成恒成立,可得 1>|k-1|,
即-1<k-1<1,解得 0<k<2,故实数k的取值范围是(0,2),
故答案为:(0,2).
点评:本题主要考查绝对值的意义,绝对值不等式的解法,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=2x.若对任意的x∈[t,t+2],不等式f(x+t)≥f2(x)恒成立,则实数t的取值范围是( )
| A、(-∞,-2] | ||
| B、(0,2] | ||
C、(-∞,-
| ||
D、[-
|