题目内容
9.函数f(x)=$\sqrt{1-(\frac{1}{2})^{x}}+\frac{1}{3-x}$的定义域为( )| A. | (-∞,0) | B. | (0,+∞) | C. | (0,3)∪(3,+∞) | D. | [0,3)∪(3,+∞) |
分析 根据函数成立的条件即可求函数的定义域.
解答 解:要使函数有意义,则$\left\{\begin{array}{l}{3-x≠0}\\{1-(\frac{1}{2})^{x}≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≠3}\\{x≥0}\end{array}\right.$,即x≥0且x≠3,
即函数的定义域为[0,3)∪(3,+∞),
故选:D
点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关题目
19.函数f(x)=$\frac{x-1}{lg(x+1)}$的定义域为( )
| A. | (-1,+∞) | B. | (-1,1)∪(1,+∞) | C. | (-1,0)∪(0,+∞) | D. | (-1,0)∪(0,1)∪(1,+∞) |