题目内容
(本小题满分12分)
已知点
为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线
的方程;
(II)试证明:在
轴上存在定点
,使得
总能被
轴平分
已知点
(I)求曲线
(II)试证明:在
(1)
;(2)见解析.
(Ⅰ)利用相关点法把所求点的问题转化已知动点问题,从而得到曲线的轨迹方程;(Ⅱ)联立方程,利用韦达定理及条件转化为点的坐标关系,从而求出点的坐标。
解:(1)设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为
. ………………2分
(2)设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得
,……5分
∵
,∴
,
∴直线
与曲线
总有两个公共点.(也可根据点M在椭圆
的内部得到此结论)
………………6分
设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
, ………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
当
时,(*)对任意的s都成立,从而
总能被
轴平分.
所以在x轴上存在定点
,使得
总能被
轴平分.
解:(1)设
∴
(2)设点
代入曲线
∵
∴直线
………………6分
设点
要使
即
也就是
即
当
所以在x轴上存在定点
练习册系列答案
相关题目