ÌâÄ¿ÄÚÈÝ
13£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌΪx-y-4=0£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}cos¦Á\\ y=sin¦Á\end{array}\right.$£®£¨1£©ÒÑÖªÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬µãPµÄ¼«×ø±êΪ$£¨4£¬\frac{¦Ð}{2}£©$£¬Çó¹ýµãPÇÒÓëÖ±Ïßl´¹Ö±µÄÖ±Ïß·½³Ì
£¨2£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£®
·ÖÎö £¨1£©ÔÚ¼«×ø±êϵÖУ¬Ê×ÏȵãPµÄ¼«×ø±êΪ$£¨4£¬\frac{¦Ð}{2}£©$£¬×ª»¯ÎªÖ±½Ç×ø±êΪP£¨0£¬4£©£¬½øÒ»²½ÇóµÃÖ±ÏßlµÄ·½³ÌΪx-y-4=0µÄбÂÊΪ1£¬×îºóÀûÓÃÖ±Ïß´¹Ö±µÄ³äÒªÌõ¼þÇó³öÏàÓ¦µÄÖ±Ïß·½³Ìx+y-4=0£®
£¨2£©Ê×ÏÈÉèQ£¨$\sqrt{3}cos¦Á$£¬sin¦Á£©ÎªÇúÏßCÉϵ͝µã£¬Ö±½ÓÀûÓõ㵽ֱÏßx-y-4=0µÄ¾àÀ빫ʽ£¬ÔÙÀûÓÃÈý½Çº¯ÊýµÄºãµÈ±ä»»Çó³öÏàÓ¦µÄ½á¹û£®
½â´ð ½â£º£¨1£©ÔÚ¼«×ø±êϵÖУ¬µãPµÄ¼«×ø±êΪ$£¨4£¬\frac{¦Ð}{2}£©$£¬×ª»¯ÎªÖ±½Ç×ø±êΪP£¨0£¬4£©£¬
Ö±ÏßlµÄ·½³ÌΪx-y-4=0µÄбÂÊΪ1£¬
Ôò£º¹ýµãPÇÒÓëÖ±Ïßl´¹Ö±µÄÖ±Ïß·½³ÌΪ£ºy-4=-x£¬
ÕûÀíµÃ£ºx+y-4=0£®
£¨2£©ÉèQ£¨$\sqrt{3}cos¦Á$£¬sin¦Á£©ÎªÇúÏßCÉϵ͝µã£¬
Ôòµ½Ö±Ïßl£ºx-y-4=0µÄ¾àÀ룺
d=$\frac{|\sqrt{3}cos¦Á+sin¦Á-4|}{\sqrt{2}}$£¬
=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-4|}{\sqrt{2}}$£¬
µ±$¦Á=\frac{¦Ð}{6}$ʱ£¬${d}_{min}=\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬Ö±Ïß´¹Ö±µÄ³äÒªÌõ¼þ£¬Ö±Ïß·½³ÌµÄÇ󷨣¬µãµ½Ö±ÏߵľàÀ빫ʽµÄÓ¦Óã¬Èý½Çº¯Êý¹ØÏµÊ½µÄºãµÈ±ä»»£¬Èý½Çº¯ÊýµÄ×îÖµ£¬ÊôÓÚ»ù´¡ÌâÐÍ£®
| A£® | -$\frac{3\sqrt{3}}{2}$ | B£® | -$\frac{3}{2}$ | C£® | $\frac{3}{2}$ | D£® | $\frac{3\sqrt{3}}{2}$ |
| A£® | a¡Ü-3 | B£® | a¡Ý-3 | C£® | a¡Ü5 | D£® | a¡Ý3 |
| A£® | b£¼d£¼a£¼c | B£® | d£¼b£¼c£¼a | C£® | b£¼d£¼c£¼a | D£® | d£¼b£¼a£¼c |
½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚĿʱ¼ä²»µÍÓÚ40·ÖÖӵĹÛÖÚ³ÆÎª¡°ÌåÓýÃÔ¡±£®ÒÑÖª¡°ÌåÓýÃÔ¡±ÖÐÓÐ10ÃûÅ®ÐÔ£®
£¨1£©ÊÔÇó¡°ÌåÓýÃÔ¡±ÖеÄÄÐÐÔ¹ÛÖÚÈËÊý£»
£¨2£©¾Ý´Ë×ÊÁÏÍê³É2¡Á2ÁÐÁª±í£¬ÄãÊÇ·ñÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ¿
| P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
£¨²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}£¬ÆäÖÐn=a+b+c+d$
| ·ÇÌåÓýÃÔ | ÌåÓýÃÔ | ºÏ¼Æ | |
| ÄÐ | |||
| Å® | |||
| ºÏ¼Æ |