题目内容

17.已知x,y满足$\left\{\begin{array}{l}x+y≤4\\ x-y≥0\\ x≥0\end{array}$,若目标函数z=x+2y的最大值为n,则${(x-\frac{2}{{\sqrt{x}}})^n}$展开式的常数项为240.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得n,再由二项式的通项求解.

解答 解:由约束条件x,y满足$\left\{\begin{array}{l}x+y≤4\\ x-y≥0\\ x≥0\end{array}$,作出可行域如图,

联立$\left\{\begin{array}{l}{x-y=0}\\{x+y=4}\end{array}\right.$,解得A(2,2),
化目标函数z=x+2y为y=-$\frac{x}{2}$+$\frac{z}{2}$,由图可知,当直线y=-$\frac{x}{2}$+$\frac{z}{2}$过A时,直线在y轴上的截距最大,z有最大值为6.
则${(x-\frac{2}{{\sqrt{x}}})^n}$=$({x-\frac{2}{\sqrt{x}})}^{6}$.
由Tr+1=${C}_{6}^{r}$(-2)r•${x}^{6-r-\frac{r}{2}}$.
令6-$\frac{3}{2}r$=0得r=4.
∴则$(x-\frac{2}{\sqrt{x}})^{6}$展开式的常数项为${C}_{6}^{4}(-2)^{4}$=240.
故答案为:240.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法与数学转化思想方法,考查二项式定理的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网