题目内容
(Ⅰ)求∠ADF的度数;(Ⅱ)若AB=AC,求
| AC |
| BC |
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:(Ⅰ)利用切线的性质和角平分线的性质可得∠ADF=∠AFD.再利用BE是⊙O直径,可得∠BAE=90°.即可得到∠ADF=45°.
(Ⅱ)利用等边对等角∠B=∠ACB=∠EAC.由(I)得∠BAE=90°,∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,即可得到∠B=30°.进而得到△ACE∽△BCA,于是
=
=tan30°
(Ⅱ)利用等边对等角∠B=∠ACB=∠EAC.由(I)得∠BAE=90°,∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,即可得到∠B=30°.进而得到△ACE∽△BCA,于是
| AC |
| BC |
| AE |
| AB |
解答:
解:(Ⅰ)∵AC是⊙O的切线,∴∠B=∠EAC.
又∵DC是∠ACB的平分线,∴∠ACD=∠DCB,
∴∠B+∠DCB=∠EAC+∠ACD,∴∠ADF=∠AFD.
∵BE是⊙O直径,∴∠BAE=90°.
∴∠ADF=45°.
(Ⅱ)∵AB=AC,∴∠B=∠ACB=∠EAC.
由(I)得∠BAE=90°,∴∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,
∴∠B=30°.
∵∠B=∠EAC,∠ACB=∠ACB,
∴△ACE∽△BCA,
∴
=
=tan30°=
.
又∵DC是∠ACB的平分线,∴∠ACD=∠DCB,
∴∠B+∠DCB=∠EAC+∠ACD,∴∠ADF=∠AFD.
∵BE是⊙O直径,∴∠BAE=90°.
∴∠ADF=45°.
(Ⅱ)∵AB=AC,∴∠B=∠ACB=∠EAC.
由(I)得∠BAE=90°,∴∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,
∴∠B=30°.
∵∠B=∠EAC,∠ACB=∠ACB,
∴△ACE∽△BCA,
∴
| AC |
| BC |
| AE |
| AB |
| ||
| 3 |
点评:熟练掌握圆的性质、切线的性质和角平分线的性质、弦切角定理、相似三角形的性质等是解题的关键.
练习册系列答案
相关题目
已知∠α的顶点在坐标原点O,始边与x轴的非负半轴重合,点P在α的终边上,点Q(-3,-4)且tanα=-2,则
与
的夹角的余弦值为( )
| OP |
| OQ |
A、-
| ||||||||
B、
| ||||||||
C、
| ||||||||
D、
|