题目内容

解下列不等式:
(1)3x2-7x+2<0(2)-6x2-x+2≤0
(3)4x2+4x+1<0(4)x2-3x+5>0
(5)
x+2
3x-1
>0(6)
2-x
2x-1
≤1
考点:其他不等式的解法
专题:不等式的解法及应用
分析:把要解的不等式等价转化为与之等价的一元二次不等式,联系对应的二次函数的图象,求出不等式的解集.
解答: 解:(1)由3x2-7x+2<0,可得(3x-1)(x-2)<0,求得不等式的解集为{x|
1
3
<x<2}.
(2)由)-6x2-x+2≤0,可得(2x-1)(3x+2)≥0,求得不等式的解集为{x|x≥
1
2
,或x≤-
2
3
}.
(3)由4x2+4x+1<0,可得(2x+1)2<0,x∈∅.
(4)由x2-3x+5>0,可得 (x-
3
2
)
2
+
11
4
>0 恒成立,故不等式的解集为R.
(5)由
x+2
3x-1
>0,可得(x+2)(3x-1)>0,求得不等式的解集为{x|x>
1
3
,或x<-2}.
(6)由
2-x
2x-1
≤1,可得
3x-3
2x-1
>0,即(2x-1)(3x-3)>0,求得不等式的解集为{x|x>1,或x<
1
2
}.
点评:本题主要考查分式不等式的解法,一元二次不等式的解法,体现了等价转化的数学思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网