题目内容
若圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为 .
(x-2)2+(y+3)2=5
已知△ABC的内角A的大小为120°,面积为.
(1) 若AB=2,求△ABC的另外两条边长;
(2) 设O为△ABC的外心,当BC=时,求·的值.
设a,b是两条不同的直线,α,β是两个不同的平面,现有如下四个命题:
①若a⊥b,a⊥α,则b∥α;
②若a⊥β,α⊥β,则a∥α;
③若a∥α,a⊥β,则α⊥β;
④若a⊥b,a⊥α,b⊥β,则α⊥β.
其中正确的命题序号是 .
在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.
(1) 求数列{an}的通项公式;
(2) 设bn=log2an,求数列{bn}的前n项和Sn;
(3) 是否存在k∈N*,使得++…+<k对任意n∈N*恒成立?若存在,求出k的最小值;若不存在,请说明理由.
设f(x)=,x1=1,xn=f()(n≥2,n∈N+).
(1) 求x2,x3,x4的值;
(2) 归纳并猜想{xn}的通项公式;
(3) 用数学归纳法证明你的猜想.
已知圆x2+y2+x-6y+3=0上的两点P,Q关于直线kx-y+4=0对称,且OP⊥OQ(O为坐标原点),则直线PQ的方程为 .
如图,以过原点的直线的倾斜角θ为参数,求圆x2+y2-x=0的参数方程.
如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1) 求椭圆C的方程;
(2) 已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
设数集A={a2,2},B={1,2,3,2a-4},C={6a-a2-6},如果C⊆A,C⊆B,求a的取值的集合.