ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}-{£¨x-1£©^2}+2£¬\;\;\;x¡Ü1\\ \frac{1}{x}+1£¬\;\;x£¾1\;.\;\;\end{array}\right.$ÏÂÁÐËĸöÃüÌ⣺¢Ùf£¨f£¨1£©£©£¾f£¨3£©£»
¢Ú?x0¡Ê£¨1£¬+¡Þ£©£¬$f'£¨{x_0}£©=-\frac{1}{3}$£»
¢Ûf£¨x£©µÄ¼«´óÖµµãΪx=1£»
¢Ü?x1£¬x2¡Ê£¨0£¬+¡Þ£©£¬|f£¨x1£©-f£¨x2£©|¡Ü1
ÆäÖÐÕýÈ·µÄÓТ٢ڢۢܣ®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©
·ÖÎö ½â£ºº¯Êýf£¨x£©µÄͼÐÎÈçͼËùʾ£¬
¶ÔÓÚ¢Ù£¬f£¨1£©=2£¬f£¨f£¨1£©£©=f£¨2£©=$\frac{3}{2}$£¬f£¨3£©=$\frac{4}{3}$£¬£®
¶ÔÓÚ¢Ú£¬x£¾1ʱ£¬f¡ä£¨x£©=-$\frac{1}{{x}^{2}}$=-$\frac{1}{3}$£¬⇒x=$\sqrt{3}$£®£®
¶ÔÓÚ¢Û£¬¸ù¾ÝͼÐοÉÅжϣ®
¶ÔÓڢܣ¬ÓÉx¡Ê£¨0£¬+¡Þ£©Ê±£¬1£¼f£¨x£©¡Ü2£¬¿ÉÅжÏ
½â´ð ½â£ºº¯Êýf£¨x£©µÄͼÐÎÈçͼËùʾ£¬
¶ÔÓÚ¢Ù£¬f£¨1£©=2£¬f£¨f£¨1£©£©=f£¨2£©=$\frac{3}{2}$£¬f£¨3£©=$\frac{4}{3}$£¬¹Ê¢ÙÕýÈ·£®
¶ÔÓÚ¢Ú£¬x£¾1ʱ£¬f¡ä£¨x£©=-$\frac{1}{{x}^{2}}$=-$\frac{1}{3}$£¬⇒x=$\sqrt{3}$£®¹Ê¢ÚÕýÈ·£®
¶ÔÓÚ¢Û£¬¸ù¾ÝͼÐοÉÅжϢÛÕýÈ·£®
¶ÔÓڢܣ¬x¡Ê£¨0£¬+¡Þ£©Ê±£¬1£¼f£¨x£©¡Ü2£¬
¡à?x1£¬x2¡Ê£¨0£¬+¡Þ£©£¬|f£¨x1£©-f£¨x2£©|¡Ü1ÕýÈ·
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü![]()
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄͼÏóÓëÐÔÖÊ£¬ÊýÐνáºÏ˼Ï롢ת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®
Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈëµÄa=16£¬b=4£¬ÔòÊä³öµÄn=£¨¡¡¡¡£©
| A£® | 4 | B£® | 5 | C£® | 6 | D£® | 7 |
7£®ÒÑÖª{an}ΪµÈ²îÊýÁУ¬SnΪÆäǰnÏîºÍ£¬Èôa1=2£¬S3=15£¬Ôòa6=£¨¡¡¡¡£©
| A£® | 17 | B£® | 14 | C£® | 13 | D£® | 3 |
11£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯ÊýÓÖÊÇ£¨0£¬+¡Þ£©ÉϵÄÔöº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | y=x3 | B£® | y=2|x| | C£® | y=-x2 | D£® | y=log3£¨-x£© |
8£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏßÓëÖ±Ïßl£ºx-y+2=0ƽÐУ¬ÔòË«ÇúÏßCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{\sqrt{5}}{2}$ | B£® | $\sqrt{2}$ | C£® | $\frac{2\sqrt{3}}{3}$ | D£® | $\sqrt{10}$ |
5£®ÒÑÖªµãF2£¬P·Ö±ðΪ˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÓÒ½¹µãÓëÓÒÖ§ÉϵÄÒ»µã£¬OÎª×ø±êԵ㣬ÈôµãMÊÇPF2µÄÖе㣬$|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|£¬ÇÒ$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{{\sqrt{3}+1}}{2}$ | B£® | $\frac{3}{2}$ | C£® | $\sqrt{3}$ | D£® | $2\sqrt{3}$ |