题目内容
4.设x,y,z均为正实数,则三个数$\frac{x}{z}$+$\frac{x}{y}$,$\frac{y}{x}$+$\frac{y}{z}$,$\frac{z}{x}$+$\frac{z}{y}$( )| A. | 都大于2 | B. | 都小于2 | ||
| C. | 至多有一个小于2 | D. | 至少有一个不小于2 |
分析 根据x,y,z均为正实数,由基本不等式即可得出$\frac{x}{z}+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}≥6$,这样显然可得出三个数$\frac{x}{z}+\frac{x}{y},\frac{y}{x}+\frac{y}{z},\frac{z}{x}+\frac{z}{y}$至少有一个不小于2.
解答 解:∵$\frac{x}{z}+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=(\frac{x}{z}+\frac{z}{x})$$+(\frac{x}{y}+\frac{y}{x})+(\frac{y}{z}+\frac{z}{y})≥2+2+2=6$;
∴$\frac{x}{z}+\frac{x}{y},\frac{y}{x}+\frac{y}{z},\frac{z}{x}+\frac{z}{y}$中至少有一个不小于2.
故选D.
点评 考查基本不等式:$a+b≥2\sqrt{ab}$,a,b∈R*,注意等号成立的条件.
练习册系列答案
相关题目
9.设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是( )
| A. | a<-1 | B. | a>-1 | C. | a>-$\frac{1}{e}$ | D. | a<-$\frac{1}{e}$ |
13.已知直线l的极坐标方程为2ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,点A的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$),则点A到直线l的距离为( )
| A. | $\frac{5}{3}\sqrt{3}$ | B. | $\frac{5}{2}\sqrt{3}$ | C. | $\frac{5}{3}\sqrt{2}$ | D. | $\frac{5}{2}\sqrt{2}$ |