题目内容
在平面几何里可以得出正确结论:“正三角形的内切圆半径等于这正三角形的高的”.拓展到空间,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的________ .
在平面直角坐标系中,有椭圆=1(a>b>0)的焦距为2c,以O为圆心,a为半径的圆.过点作圆的两切线互相垂直,则离心率e=________.
已知双曲线=1(a>0,b>0)的两条渐近线方程为y=±x,若顶点到渐近线的距离为1,求双曲线方程.
观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是________.
设同时满足条件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界” 数列.
(1) 若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn;
(2) 判断(1)中的数列{Sn}是否为“特界” 数列,并说明理由.
若P0(x0,y0)在椭圆=1(a>b>0)外,过P0作椭圆的两条切线的切点分别为P1、P2,则切点弦P1P2所在的直线方程是=1.那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线=1(a>0,b>0)外,过P0作双曲线的两条切线的切点分别为P1、P2,则切点弦P1P2所在的直线方程是________.
设a、b、c均为大于1的正数,且ab=10,求证:logac+logbc≥4lgc.
用数学归纳法证明:
已知一个正四面体纸盒的俯视图如图所示,其中四边形是边长为的正方形,若在该正四面体纸盒内放一个正方体,使正方体可以在纸盒内任意转动,则正方体棱长的最大值为
(A) (B)1
(C)2 (D)