题目内容
(2009•襄阳模拟)已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N* )展开式中含x奇次幂的系数和.
(1)求数列{an}的通项公式;
(2)设f(n)=
,求f(0)+f(
)+f(
)+…+f(
);
(3)证明:
+
+…+
≥
(1-
).
(1)求数列{an}的通项公式;
(2)设f(n)=
| 4 |
| 9an+12 |
| 1 |
| n |
| 2 |
| n |
| n |
| n |
(3)证明:
| a2 |
| (a2-4)(a3-4) |
| a3 |
| (a3-4)(a4-4) |
| an |
| (an-4)(an+1-4) |
| 1 |
| 256 |
| 1 |
| 4n2-3n |
分析:(1)记(1+2x)2n=a0+a1x+…+a2nx2n,利用赋值可分别令x=1得:32n=a0+a1+…+a2n,令x=-1得:1=a0-a1+a2-a3+…-a2n-1+a2n两式相减得:32n-1=2(a1+a3+…+a2n-1),从而可求
(2)由(1)可得f(n)=
=
,注意到f(n)+f(1-n)=
,从而可考虑利用倒序相加求和即可
(3)由
=
=
=
(
-
),故可以利用裂项求和先求和,然后利用二展开式进行放缩可证
(2)由(1)可得f(n)=
| 4 |
| 4×9n+12 |
| 1 |
| 9n+3 |
| 1 |
| 3 |
(3)由
| an |
| (an-4)(an+1-4) |
| 4×9n-1 |
| (4×9n-1-4)(4×9n-4) |
| 9n-1 |
| 4(9n-1-1)(9n-1) |
=
| 1 |
| 32 |
| 1 |
| 9n-1-1 |
| 1 |
| 9n-1 |
解答:解:(1)记(1+2x)2n=a0+a1x+…+a2nx2n
令x=1得:32n=a0+a1+…+a2n
令x=-1得:1=a0-a1+a2-a3+…-a2n-1+a2n
两式相减得:32n-1=2(a1+a3+…+a2n-1)
∴Sn=
(9n-1)(2分)
当n≥2时,an=Sn-Sn-1=4×9n-1
当n=1时,a1=S1=4,适合上式
∴an=4×9n-1(4分)
(2)f(n)=
=
注意到f(n)+f(1-n)=
+
=
+
=
(6分)
令T=f(0)+f(
)+f(
)+…+f(
)
则T=f(
)+f(
)+…+f(
)+f(0)
∴2T=[f(0)+f(
)]+[f(
)+f(
)]+…+[f(
)+f(
)]+[f(
)+f(0)]
故T=
,即f(0)+f(
)+f(
)+…+f(
)=
(8分)
(3)
=
=
=
(
-
) (n≥2)(10分)
∴Sn=
[(
-
)+(
-
)+…+ (
-
)]
=
(
-
)(12分)
∵9n-1=(8+1)n-1=Cn1×8+Cn2×82+…+Cnn8n≥
×8+
×82=8n+82×
=8(4n2-3n)
从而可得,
+
+…+
≥
(1-
).(14分)
令x=1得:32n=a0+a1+…+a2n
令x=-1得:1=a0-a1+a2-a3+…-a2n-1+a2n
两式相减得:32n-1=2(a1+a3+…+a2n-1)
∴Sn=
| 1 |
| 2 |
当n≥2时,an=Sn-Sn-1=4×9n-1
当n=1时,a1=S1=4,适合上式
∴an=4×9n-1(4分)
(2)f(n)=
| 4 |
| 4×9n+12 |
| 1 |
| 9n+3 |
注意到f(n)+f(1-n)=
| 1 |
| 9n+3 |
| 1 |
| 91-n+3 |
| 1 |
| 9n+3 |
| 9n |
| 9+3×9n |
| 1 |
| 3 |
令T=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n |
| n |
则T=f(
| n |
| n |
| n-1 |
| n |
| 1 |
| n |
∴2T=[f(0)+f(
| n |
| n |
| 1 |
| n |
| n-1 |
| n |
| n-1 |
| n |
| 1 |
| n |
| n |
| n |
故T=
| n+1 |
| 6 |
| 1 |
| n |
| 2 |
| n |
| n |
| n |
| n+1 |
| 6 |
(3)
| an |
| (an-4)(an+1-4) |
| 4×9n-1 |
| (4×9n-1-4)(4×9n-4) |
| 9n-1 |
| 4(9n-1-1)(9n-1) |
=
| 1 |
| 32 |
| 1 |
| 9n-1-1 |
| 1 |
| 9n-1 |
∴Sn=
| 1 |
| 32 |
| 1 |
| 9-1 |
| 1 |
| 92-1 |
| 1 |
| 92-1 |
| 1 |
| 93-1 |
| 1 |
| 9n-1-1 |
| 1 |
| 9n-1 |
=
| 1 |
| 32 |
| 1 |
| 8 |
| 1 |
| 9n-1 |
∵9n-1=(8+1)n-1=Cn1×8+Cn2×82+…+Cnn8n≥
| C | 1 n |
| C | 2 n |
| n(n-1) |
| 2 |
从而可得,
| a2 |
| (a2-4)(a3-4) |
| a3 |
| (a3-4)(a4-4) |
| an |
| (an-4)(an+1-4) |
| 1 |
| 256 |
| 1 |
| 4n2-3n |
点评:本题主要考查了利用赋值法求二项展开式的系数,及数列求和中的倒序相加、裂项求和等方法的应用,还要注意放缩法在证明不等式中的应用.
练习册系列答案
相关题目