题目内容

13.已知f(x)=cos(ωx+$\frac{π}{3}$)(ω>0)的图象与y=1的图象的两相邻交点间的距离为π,要得到y=f(x)的图象,只需把y=sinωx的图象(  )
A.向左平移$\frac{5π}{12}$个单位B.向右平移$\frac{5π}{12}$个单位
C.向左平移$\frac{7π}{12}$个单位D.向右平移$\frac{7π}{12}$个单位

分析 由f(x)=cos(ωx+$\frac{π}{3}$)(ω>0)的图象与y=1的图象的两相邻交点间的距离为π,即T=π,可得ω.再利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:由题意,f(x的图象与y=1的图象的两相邻交点间的距离为π,
即T=π,∴$\frac{2π}{ω}=π$,
∴ω=2.
那么f(x)=cos(2x+$\frac{π}{3}$).
可得:y=sin2x=cos(2x$-\frac{π}{2}$),设平移φ个单位,可得cos[2(x+φ)-$\frac{π}{2}$]=cos(2x+2φ-$\frac{π}{2}$).
由题意,可得:2φ-$\frac{π}{2}$=$\frac{π}{3}$,
∴φ=$\frac{5π}{12}$.
即向左平移$\frac{5π}{12}$个单位.
故选:A.

点评 本题主要考查三角函数的图象变换规律,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网